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I. INTRODUCTION

The present SNS space-charge simulations are performed using several computer codes:

SIMPSONS [1], ORBIT [2] and UAL [3]. In SIMPSONS, the Poisson equation for the

space-charge potential is solved with boundary conditions at the wall of a vacuum chamber

of circular cross section. While in ORBIT and UAL, the space-charge algorithm is im-

plemented using the Hockney convolution method [4] with open boundary condition thus

missing the e�ect of image charges and currents. Such algorithm was chosen based on speed

consideration which is a crucial question in space-charge simulations with a large number of

particles.

The UAL open environment addresses a complex combination of several physical e�ects

typical to the SNS project. Some of them are �eld errors, misalignments and space-charge.

The greatest advantage of the UAL is that it supports the incremental development of

independent components. For example, space-charge and injection painting were speci�cally

developed for ORBIT and then implemented into UAL in a simple manner. Thus UAL has

identical to ORBIT space-charge algorithm with open boundary conditions. In the same

way, UAL allows straightforward inclusion of any other space-charge algorithm which will

prove to be more e�cient or more accurate.

The ultimate goal of our space-charge studies is to achieve very low level of beam losses.

In order to be able to make predictions of the low level loss, tracking with a large number of

particles becomes essential. However, before rushing in simulations with millions of particles

we need to be sure that the most signi�cant physical e�ects are included in our simulations.
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We thus have to identify and estimate the importance of various e�ects not yet included in

the code. The purpose of these notes is to understand the contribution of one of such e�ects

- the e�ect of walls.

To get some feeling whether wall e�ect can be important in our space-charge simulation

we examine contributions to the incoherent and coherent tune shifts arising from the im-

age charges and currents. We will speci�cally reproduce boundary conditions required for

derivation of the tune shift formulas and for realistic simulations. Tune shift formulas for a

general case of a bunched beam will be also presented. To our knowledge, the best collection

and description of these formulas is given in [5] and [6]. Formulas for these notes are simply

taken from [6] and are reproduced here for clarity and convinience of discussions. We also

try to eliminate typing mistakes present in the literature.

II. GENERAL DEFINITIONS

In addition to direct space-charge �elds, induced �elds due to charges and currents in

the surrounding vacuum chamber walls (image �elds) shift the betatron frequencies which

is often called Laslett tune shifts. Formulas below will be presented for the vertical motion,

but they are also applicable to the horizontal motion.

For the vertical motion we have:

d2y

dt2
+Q2
2y = F=m0; (2.1)

where Q is a bare betatron tune and 
 is a revolution frequency. The function F can be

expanded to �rst order of the test particles motion y and the average beam position �y to

give:

d2y

dt2
+Q2
2y =

1

m0

�h@F
@y

i
�y=0

y +
h@F
@�y

i
y=0

�y
�
: (2.2)

When �y(t) = 0, we have:

d2y

dt2
+
�
Q2
2 � 1

m0

h@F
@y

i
�y=0

�
y = 0; (2.3)
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which gives the following incoherent tune shift:

�Qinc = � 1

2Qm0
2

h@F
@y

i
�y=0

: (2.4)

When d�y=dt 6= 0, the coherent motion can be solved by choosing y = �y in Eq. (2.2). We

thus have:

d2y

dt2
+
�
Q2
2 � 1

m0

�h@F
@y

i
�y=0

+
h@F
@�y

i
y=0

��
�y = 0; (2.5)

with the coherent tune shift

�Qcoh = � 1

2Qm0
2

�h@F
@y

i
�y=0

+
h@F
@�y

i
y=0

�
: (2.6)

III. BOUNDARY CONDITIONS AND FIELD COEFFICIENTS

A. Incoherent

For the incoherent tune shift, the case is pretty simple since all the �elds are static and

the force F is reduced to the single term (@F=@y)y. To obtain the self-�eld and image-�eld

coe�cients, we need to satisfy the following boundary conditions:

TABLE I. Field source and boundary condition

Field source boundary conditions components in (@F=@y)�y=0

self free space e

�h
@Ey

@y

i
�y=0

� vs
h
@B?
@y

i
�y=0

�
=

= �sc
h
�e
��0

i
1

2b2

d.c. electric image Ek = 0 on vacuum chamber e
h
@Ey

@y

i
�y=0

= �1
h
�e
��0

i
1

h2

d.c. magnetic image Bk = 0 on magnetic poles evs
h
@B?
@y

i
�y=0

= �2
h
�e
��0

i
�2

g2

In this table h is the half height of the vacuum chamber, and g is the half gap of the

magnet poles. For simple geometries the image coe�cients are well known (see for example

[5], [6]), and will be used later in these notes.
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B. Coherent

Boundary conditions now depend upon whether the oscillating �eld of the beam is of a

low enough frequency to penetrate the vacuum chamber and to reach the magnetic poles or

not. Electric �elds are always considered as non-penetrating. However, for magnetic �eld

both penetrating and non-penetrating �elds are possible. For the non-penetrating �elds, the

magnetic image should be decomposed into its d.c. part, which is bounded on the poles,

and a.c. part, which is bounded on the vacuum chamber.

TABLE II. Field source and boundary condition

Field source boundary conditions (@F=@y)�y=0 + (@F=@�y)y=0

Penetrating mag. �elds:

electric image Ek = 0 on v. chamber e

�h
@Ey

@y

i
�y=0

+
h
@Ey

@�y

i
y=0

�
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h
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i
1

h2

magnetic image Bk = 0 on mag. poles evs
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@B?
@y

i
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+
h
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i
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�
= �2

h
�e
��0

i
�2

g2

Non-penetrating mag. �elds:

electric image Ek = 0 on v. chamber e

�h
@Ey

@y

i
�y=0

+
h
@Ey

@�y

i
y=0

�
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h
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a.c. magnetic image B? = 0 on v. chamber evs
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i
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= �(�1 � �1)
h
�e
��0

i
�2

h2
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Note that d.c. part for the non-penetrating �elds is identical to the incoherent part

(�y = 0). While for the penetrating �elds we also have contribution from �y 6= 0.

IV. TUNE SHIFT IN BUNCHED BEAMS

Below we remind tune shift formulas valid for a general case of a bunched beam (using Bf

for bunching factor) with neutralisation parameter ne. We also keep the structure parameter

Ci which represents the fraction of the circumference occupied by each type of component.

�Qinc = �
�
Nr0
��2

�� ��

Bf

(
1

2
� ne)

�sc
b2

+
X
i

Ci
��i

�
(1� ne)

Bf

�1;i
h2i

+ �2
�2;i
g2i
� �2(

1

Bf

� 1)
�1;i
h2i

��
;

(4.1)

where N is a number of particles in a bunch, r0 is a classical proton radius, � is relativistic

parameter, and �� � R=Q is an average beta function. Here, the �rst term under the
P

sign

comes from the electric image, the second term comes from d.c. magnetic image, and the

third term comes from a.c. magnetic image due to axial bunching. For the coherent tune

shift, in the case of the penetrating magnetic �elds, we have:

�Qp
coh = �

�
Nr0
��2

�X
i

Ci
��i

�
(1� ne)

Bf

�1;i
h2i

+ �2
�2;i
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� �2(

1
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� 1)
�1;i
h2i

�
: (4.2)

Once again, the �rst term under the
P

sign comes from the electric image, the second term

comes from d.c. magnetic image, and the third term comes from a.c. magnetic image due

to axial bunching. For the coherent tune shift, in the case of the non-penetrating magnetic

�elds, we have:

�Qnon�p
coh = �

�
Nr0
��2

�X
i

Ci
��i

�
(1� ne)

Bf

�1;i
h2i

+ �2
�2;i
g2i
� �2(

1
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� 1)
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� �2

(�1;i � �1;i)
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�
;

(4.3)

where additional term comes from a.c. magnetic image due to the transverse motion.
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V. APPLICATION TO SNS PARAMETERS

Before we apply formulas (presented in the previous section) for typical SNS ring pa-

rameters, we make several assumptions. We assume that ne = 0, and also do not take into

account the structure parameter Ci. Then, after rearranging, the tune shift formulas become

�Qinc = �
�

Nr0
��2b2

��
��

1

2
�sc
Bf

+
1

2Bf

�1
(h=b)2

+ �2
�2

(g=b)2
+ �2

�1
(h=b)2

�
; (5.1)

�Qp
coh = �

�
Nr0

��2b2
��
��

1

2Bf

�1
(h=b)2

+ �2
�2

(g=b)2
+ �2

�1
(h=b)2

�
; (5.2)

�Qnon�p
coh = �

�
Nr0

��2b2
��
��

1

2Bf

�1
(h=b)2

+ �2
�2

(g=b)2
+ �2

�1
(h=b)2

�
; (5.3)

Expression for the self-�eld (SF) coe�cient �sc will depend on the beam distribution and

beam shape, while image coe�cients will depend on the geometry of the vacuum chamber

and magnetic poles. In this example, we assume uniform density circular beam which gives

�sc = 1=2, this is su�cient to estimate the relative e�ect of images compare to the self-�eld

contribution, which is the purpose of these notes. We also assume circular geometry for the

vacuum chamber which gives �1 = 0, �1;x;y = 1=2 (with the assumption of a pencil beam; the

e�ect of a �nite beam size on the image coe�cients will be discussed in the next section).

(Note that SNS beam pipe cross section is actually a hexagonal which can be approximated

by an ellipse with the major=minor axis ratio close to 1:4. This would give small but �nite

�1 � 0:1 [8].) For the magnetic yoke we use approximation of parallel plates which gives

�2;y;x = ��2=24, �2;x = 0, �2;y = �2=16 (note that circular magnetic yoke occurs only in

superconducting magnets). Once again, we present estimates only for the vertical motion.

Extension to the horizontal motion is straightforward.

Taking Bf � 1=2,  � 2, �2 � 0:77 and g=b � 2, we have

�Qinc � �C
h1
4
� 0:77

4

�2

24

i
; (5.4)

where C stands for the relative coe�cient in front, the �rst term reects the e�ect of the self-

�elds, and the second term shows the e�ect of d.c. magnetic image. We can see that there
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is no e�ect from the electric images at all because of the circular geometry of the vacuum

chamber. The e�ect of the magnetic images is relatively small. Besides, the magnetic image

e�ect becomes important only at low frequencies (see Appendix).

For estimates of the coherent tune shift we now have to choose an additional parameter

h=b. The smallest ratio in the case of the correlated painting is currently (h=b)2 = 2. With

this value, for the penetrating magnetic �elds we have:

�Qp
coh � �C

h1
8
+

0:77

4
+

0:77

4

�2

16

i
; (5.5)

where the �rst term reects the e�ect of the electric image and a.c. magnetic image, the

second term reects a.c. magnetic image due to axial bunching, and the third term shows

the e�ect of d.c. magnetic image. Thus, we would have important contribution from the

�rst two terms. Similarly, for the non-penetrating �elds, we have:

�Qnon�p
coh � �C

h1
8
� 0:77

4

�2

24

i
; (5.6)

where the second term again applies only to very low frequencies, and thus important con-

tribution will come only from the �rst term. With (h=b)2 = 4 (which would be the largest

possible ratio for the �nal-intensity beam in present SNS design) contribution from the �rst

term (electric image plus a.c. magnetic image) will be 1=4 of the self-�eld contribution,

which is still signi�cant. We thus try to summarize these e�ects via the following table:

TABLE III. Relative e�ect

Coherent tune shift Incoherent tune shift

Electric image from 1/2 to 1/4 of the SF term 0 (due to circular v.ch. geometry)

plus a.c. magnetic

magnetic d.c. magnetic: only low f small e�ect, plus only at low f

penetrating a.c. mag. from axial bunching: 1/2 of SF

magnetic d.c. magnetic: only low f 0

non-penetrating a.c. magnetic: 0

7



VI. DISCUSSION OF A FINITE BEAM SIZE EFFECT

In our estimates we used the image coe�cients derived in the assumption that distances

between a beam and its images are much greater than the transverse beam size. This

assumption allows us to approximate the beam and its images by line charges and currents

which is not quite accurate for the SNS beam parameters.

Below we underline the principle di�erence due to Zotter [7]. For a pencil beam at x0 in

a circular vacuum chamber of radius h, the electric image coe�cient evaluated at point x is

given by

�1 = � �2
0

2(1� �0�)2
; (6.1)

where �0 � x0=h and � � x=h. For a beam at the center of vacuum chamber (�0 = 0), and

thus we have �1 = 0 as we used in our estimates. For a uniform at beam of width 2a we

have [7]:

�1(�; �0; �) = � 1

2�2

�
1 +

1

u2 � v2
+

1

v
ln
u� v

u+ v

�
; (6.2)

where u � 1���0, v � �� with � � a=h. For �! 0 this expression becomes indeterminate.

Thus this limit should be obtained directly from integration over a beam of �nite width.

Final result is the following:

�1(0; �0; �) = �1

2

�
�2
0
+
�2

3

�
: (6.3)

Now, at �0 = 0, �1 6= 0, and, for example, for �2 = 1=2 we have �1 = �1=12.
We can see that for the �nal-size SNS beam at full-intensity our estimates based on pencil

beams are not quite accurate. However, we should note that, due to the multi-turn injection

painting, beam size increases gradually. The signi�cant value of � is reached only at the end

of painting just before extraction. Thus we can still neglect the �nite beam size contribution

in our rough estimates the purpose of which were just to get feeling of the necessity of

boundary condition in present simulations. Clearly, �nite beam size corrections are required

for instability studies with the full-intensity beam. But we already concluded, even based on
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the assumption of a pencil beam, that exact boundary conditions in simulations are essential

for instability studies.

Also note that more realistic estimates would require taking into the fact that the SNS

vacuum chamber has elliptic cross section. For such vacuum chamber pro�le and a �nite

beam size it is not possible to obtain analytic expression as in the case of a pencil beam but

it can be done numerically for speci�c parameters [7].

VII. CONCLUSIONS

For present SNS parameters, disregarding wall e�ect in simulations does not have signif-

icant impact on the incoherent tune shifts and associated with them studies such as a choice

of the working point, resonances or dynamic aperture.

For the coherent tune shifts and associated coherent instabilities, studies missing bound-

ary conditions at magnetic poles would give signi�cant e�ect only for low frequencies (see

Appendix). However, boundary conditions at the vacuum chamber (both electric and mag-

netic) are important, especially for very small ratios of h=b.

Since at this stage we are not concerned with the instability studies based on UAL, our

space-charge simulations are probably accurate enough even without wall e�ects. However,

this question of images should be addressed when we decide to incorporate impedances for

instability and realistic beam dynamics studies �rst in ORBIT and then in UAL.
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APPENDIX A: FREQUENCY RANGE FOR NON-PENETRATING FIELDS

In this section we follow B. Zotter criterion for deciding whether the �elds will penetrate.

The �elds will be non-penetrating if the skin depth � <
p
hw, where h is the radius of the
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vacuum chamber and w is the wall thickness. We thus have

� =

r
c

2��k
<
p
hw; (A1)

k >
c

2��hw
: (A2)

For the SNS, with w = 4 mm, h = 10 cm, and the conductivity of a stainless steel � =

1:3 � 1016[1=s], we �nd that �elds are non-penetrating for frequencies f > 450 Hz. We thus

refer to the frequencies below 450 Hz as low frequencies. Such low frequencies are outside

the range of interest for the SNS.
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